A HIGH PERFORMANCE DADDI MULTIPLIER USING 5:2 COMPRESSORS

A. P. Gobenath¹ | K. Nanthakumar² | V. Abirami³ | S. Angulakshmi⁴ | D. Priya⁵ | K. Sangeetha⁶

¹(Asst Prof, Department of ECE, M. P. Nachimuthu M. Jaganathan Engineering College, Erode, gobenathap@gmail.com)
²(Assistant Professor, Department of ECE, M. P. Nachimuthu M. Jaganathan Engineering College, Erode)
³ - ⁶(Final Year, Department of ECE, M. P. Nachimuthu M. Jaganathan Engineering College, Erode)

Abstract—In this paper 5:2 Compressors are designed to analyze the Dadda Multiplier based on area, low power consumption and delay. Multiplication is a fundamental operation in most of the signal processing algorithms. Multipliers have large area and high speed operation. To reduction the number stages in dadda multiplier by using 5:2 compressors. The power consumption of the 5:2 compressor is very low by using the exact design of the compressor. The speed of the circuits is high because the delay of the circuit is low compared to 4:2 compressor. To analyze a high speed and low power consumption using the Tanner EDA tool and hardware implementation to be done in FPGA using Xilinx ISE 9.1i.

1. INTRODUCTION

The Dadda Multiplier is a hardware multiplier. It is similar to Wallace Multiplier, but it is slightly faster and requires less gates. Dadda Multiplier reduces the number of rows as much as possible on each layer. Dadda Multiplier is less expensive when compared to Wallace Multiplier. Dadda multiplier do as few reduction as possible. The five dual-quality reconfigurable approximate 5:2 compressors, which provide the ability of switching between exact and approximate operating modes during the run time. 5:2 compressor is basic element for high speed and high accuracy multiplier. In the existing method, when compared to 5:2 compressors the speed of the 4:2 compressor in low because the delay of the circuit is high and the power consumption of 4:2 compressor is high. In order to overcome the drawbacks the 5:2 compressor design is proposed. 5:2 compressor are capable of working with the low power consumption and the speed of the compressor is high compared to the existing method.

As the weightage of sum bits 1 and the weightage of carry bits is 2 of conventional compressors, so the result that produced by these compressors are connect but not in proper binary form. when these conventional compressors are used in multiplier to achieve high speed then one half adder , full adder is required per compressor to process those carry bits. Thus it lampers the speed of operation.so the conventional compressors requires one more half adder, full adder to get the final result and this eventually adds more delay and power to the reported results.

The Dadda Multiplier is a hardware multiplier as shown in fig 1. It is similar to Wallace Multiplier, but it is slightly faster.

2. EXISTING METHOD

A four dual-quality reconfigurable approximate 4:2 compressors, provide the ability of switching between the exact and approximate operating modes during the runtime. Each of these compressors has its own level of accuracy. Different delays and power dissipations in the approximation and exact modes.

As the weightage of sum bits 1 and the weightage of carry bits is 2 of conventional compressors, so the result that produced by these compressors are connect but not in proper binary form. when these conventional compressors are used in multiplier to achieve high speed then one half adder , full adder is required per compressor to process those carry bits. Thus it lampers the speed of operation.so the conventional compressors requires one more half adder, full adder to get the final result and this eventually adds more delay and power to the reported results.

The Dadda Multiplier is a hardware multiplier as shown in fig 1. It is similar to Wallace Multiplier, but it is slightly faster. In Dadda Multiplier that reduce the number of rows as much as possible on each layer.

Fig. 2 Block Diagram of 4:2 Compressor

The 4:2 compressor structure, actually compresses five partial products bits into three as shown in fig 2. The four inputs X₁, X₂, X₃, X₄ and the output Sum have the same weight.

Fig. 3 Conventional Diagram of 4:2 Compressor
3. PROPOSED METHOD

5:2 Compressors are used to reduce the area. Efficiencies of these compressors in a 32-bit Dadda multiplier are evaluated in a 250-nm standard CMOS technology by comparing their parameters with those of the state of the art approximated mode. The 5:2 Compressor are designed to analyze the Dadda Multiplier based on area, power consumption and delay. The compressor are widely used to speed up the process and reduce the partial product stages during the multiplication. To reduce power consumption using 250nm technology.

4. REDUCTION OF DADDA MULTIPLIER

COMPRESSOR

The exact 5:2 compressor is implemented by series connection of three full adder(FA) Blocks. The 5:2 compressor block has five inputs: X1, X2, X3, X4, X5, two carry input bits: Cin1 and Cin2 and produces 4 outputs: Sum, Carry, Cout1 and Cout2 as shown in fig. 5.

5. COMPONENTS REQUIREMENTS

A) SOFTWARE USED

- Xilinx ISE (Integrated Synthesis Environment) 9.1i
- DSCH 2 (Digital Schematic)
- Tanner EDA (Electronic Design Automation) 13.0

B) HARDWARE USED

- FPGA (Field Programmable Gate Array) SPARTAN 3E

6. APPLICATIONS

- Digital Image Processing.
- Multimedia Application

7. SIMULATION RESULT OF PROPOSED METHOD
8. EXPERIMENTAL RESULT

9. CONCLUSION

In this paper 5:2 compressor are designed to analyze the dada multiplier based on low power consumption and delay. Multiplication is a fundamental operation is most of the signal processing algorithms. Multipliers have large area and high speed operation. To reduction the number of stages in dada multiplier by using 5:2 compressors. The power consumption of the 5:2 compressors is very low by using the exact design of the compressor. The speed of the circuits is high because the delay of the circuit is low powered of 4:2 compressor.

In this paper designed, simulated, synthesized and implemented an 8-bit by 8-bit dada multiplier with improved algorithm only for the unsigned integers. However, the same concept can be used to realize multiplication of signed integers, signed real numbers and FPGU (Floating Point Arithmetic Unit). Further, the proposed algorithm can be applied for higher sizes of multiplier (16 by 16, 32 by 32 and more).

REFERENCES

BIOGRAPHY

A.P. Gobenath completed his M.E Embedded System in R.V.S College of Engineering and Technology, Completed his BBA in Alagappa University, Karaikudi. Completed his B.E Electronics And Communication Engineering in M.P. Nachimuthu M.Jaganathan Engineering College, Erode. Now he is working as a Assistant Professor in the department of ECE at M.P. Nachimuthu M. Jaganathan Engineering College, Erode, Tamil Nadu, India and have 7 years of teaching experience. He has published more than 10 papers in various national and international Journals. His area of interest includes Embedded System, Antenna and Digital Image Processing.

V. Abirami has pursuing B.E Electronics And Communication Engineering in M.P. Nachimuthu M. Jaganathan Engineering College, Erode, Anna University, Chennai. She has published a paper on a national conference Her area of interest is low power VLSI design and Antenna.

S. Angulakshmi has pursuing B.E Electronics And Communication Engineering in M.P. Nachimuthu M. Jaganathan Engineering College, Erode, Anna University, Chennai. She has published a paper on a national conference. Her area of interest is low power VLSI design and Embedded System.

D. Priya has pursuing B.E Electronics and Communication Engineering in the M.P. Nachimuthu M. Jaganathan Engineering College, Erode, Anna University, Chennai. She has published a paper on a national conference. Her area of interest is low power VLSI design and Network.

K. Sangeetha has pursuing B.E Electronics and Communication Engineering in the M.P. Nachimuthu M. Jaganathan Engineering College, Erode, Anna University, Chennai. She has published a paper on a national conference. Her area of interest is low power VLSI design and Digital Image Processing.