IJRE – Volume 3 Issue 4 Paper 6


Author’s Name :  S. A.Tale| Devendra Dubey | Ram Metkar

Volume 03 Issue 01  Year 2016  ISSN No:  2349-252X  Page no: 21-24






Epileptic seizure occurs as a result of abnormal transient disturbance in the electrical activities of the brain. The electrical activities of brain fluctuate frequently and can be analyzed using electroencephalogram (EEG) signals. Therefore, the EEG signals are commonly used signals for obtaining the information related to the states of brain. The EEG recordings of an epileptic patient contain a large amount of EEG data which may require time-consuming manual interpretations. Thus, automatic EEG signal analysis using advanced signal processing techniques with the statistical features plays a significant role to recognize epilepsy in EEG recordings and also reduce the computation complexity.


EEG; Feature Information;EEG Signal Analysis.


  1. Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77, 339–350.
  2. Acharya, U. R., Sree, S. V., Alvin, A. P. C., &Suri, J. S. (2012). Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Systems with Applications, 39(10), 9072–9078.
  3. Aurlien, H., et al. (2004). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115(3), 665–673.
  4. Bajaj, V., &Pachori, R. B. (2012). Classification of seizure and non-seizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135–1142.
  5. P.Rajdev, M. Ward, J.L. Rickus, R.M.Worth and P. Irazoqui, Real-time seizure prediction from local field potentials using an adaptive wiener algorithm, Comp. in Bio. and Med., vol. 40, no. 1, pp. 97-108, 2010.
  6. L. Iasemidis,D. Shiau, W. Chaovalitwongse, J. Sackellares, P. Pardalos, J. Principe, P. Carney, A. Prasad, B. Veeramani and K. Tsakalis, Adaptive epileptic seizure prediction system, IEEE Transactions on Biomedical Engineering, vol. 50, no. 5, pp. 616-627, 2003.
  7. K. Polat and S. Gunes, Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform, Appl. Math. Compute.vol. 187, no. 2, pp. 10171026, 2007.
  8. M.A. Kabir and C. Shahnaz, Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains, Elsevier Biomedical Signal Processing and Control,7,pp. 481-491,2012.
  9. F. Liang, H. C. Wang and W. L. Chang, Combination of EEG Complexity and Spectral Analysis for Epilepsy Diagnosis and Seizure Detection, EURASIP Journal on Advances in Signal Processing, vol. 2010, article id. 853434, Hindawi Publishing Corporation, 2010.]
  10. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David and C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E, vol. 64, no. 6, p.061907,2001.
  11. Zhiwei L, Minfen S (2007) Classification of mental task EEG signals using wavelet packet entropy and SVM. In: 8th Interna- tional conference on electronic measurement and instruments, 2007. ICEMI’07, pp 3-906–3-909
  12. Keirn ZA, Aunon JI (1990) A new mode of communication between man and his surroundings. IEEE Trans Biomed Eng 37:1209–1214
  13. Nai-Jen H, Palaniappan R (2004) Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals. In: 26th Annual international conference of the IEEE engineering in medicine and biology society, 2004. IEMBS’04, pp 507–510
  14. Lin C-J, Hsieh M-H (2009) Classification of mental task from EEG data using neural networks based on particle swarm opti- mization. Neurocomputing 72:1121–1130 25. Rodrı ´guez-Bermu ´dez G, Garcı ´a-Laencina PJ, Roca-Gonza ´lez J, Roca-Dorda J (2013) Efficient feature selection and linear dis- crimination of EEG signals. Neurocomputing 115:161–165
  15. Karkare S, Saha G, Bhattacharya J (2009) Investigating long- range correlation properties in EEG during complex cognitive tasks. Chaos Solitons Fractals 42:2067–2073
  16. Amin HU, Malik AS, Subhani AR, Badruddin N, Chooi W-T (2013) Dynamics of scalp potential and autonomic nerve activity during intelligence test. In: Lee M et al (eds) Neural information processing, vol 8226. Springer, Berlin, pp 9–16
  17. Raven J (2000) The Raven’s progressive matrices: change and stability over culture and time. CognPsychol 41:1–48
  18. Kunda M, McGreggor K, Goel A (2012) Reasoning on the Raven’s advanced progressive matrices test with iconic visual representations. In: 34th Annual conference of the cognitive science society pp 1828–1833
  19. Amin HU, Malik AS, Badruddin N, Chooi W-T (2013) EEG mean power and complexity analysis during complex mental task. In: ICME International conference on complex medical engineering (CME) pp 648–651
  20. Jahankhani P, Kodogiannis V, Revett K (2006) EEG signal classification using wavelet feature extraction and neural net- works. In: IEEE John Vincent Atanasoff 2006 international symposium on modern computing, 2006. JVA’06.pp 120–124